HIPK family kinases bind and regulate the function of the CCR4-NOT complex

نویسندگان

  • Alfonso Rodriguez-Gil
  • Olesja Ritter
  • Juliane Hornung
  • Hilda Stekman
  • Marcus Krüger
  • Thomas Braun
  • Elisabeth Kremmer
  • Michael Kracht
  • M. Lienhard Schmitz
چکیده

The serine/threonine kinase HIPK2 functions as a regulator of developmental processes and as a signal integrator of a wide variety of stress signals, such as DNA damage, hypoxia, and reactive oxygen intermediates. Because the kinase is generated in a constitutively active form, its expression levels are restricted by a variety of different mechanisms. Here we identify the CCR4-NOT complex as a new regulator of HIPK2 abundance. Down-regulation or knockout of the CCR4-NOT complex member CNOT2 leads to reduced HIPK2 protein levels without affecting the expression level of HIPK1 or HIPK3. A fraction of all HIPK family members associates with the CCR4-NOT components CNOT2 and CNOT3. HIPKs also phosphorylate the CCR4-NOT complex, a feature that is shared with their yeast progenitor kinase, YAK1. Functional assays reveal that HIPK2 and HIPK1 restrict CNOT2-dependent mRNA decay. HIPKs are well known regulators of transcription, but the mutual regulation between CCR4-NOT and HIPKs extends the regulatory potential of these kinases by enabling posttranscriptional gene regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homeodomain-Interacting Protein Kinase Regulates Yorkie Activity to Promote Tissue Growth

The Hippo (Hpo) tumor suppressor pathway regulates tissue size by inhibiting cell proliferation and promoting apoptosis. The core components of the pathway, Hpo, Salvador, Warts (Wts), and Mats, form a kinase cascade to inhibit the activity of Yorkie (Yki), the transcriptional effector of the pathway. Homeodomain-interacting protein kinases (Hipks) are a family of conserved serine/threonine kin...

متن کامل

Homeodomain-interacting protein kinase promotes tumorigenesis and metastatic cell behavior

Aberrations in signaling pathways that regulate tissue growth often lead to tumorigenesis. Homeodomain-interacting protein kinase (Hipk) family members are reported to have distinct and contradictory effects on cell proliferation and tissue growth. From these studies, it is clear that much remains to be learned about the roles of Hipk family protein kinases in proliferation and cell behavior. P...

متن کامل

Drosophila homeodomain-interacting protein kinase inhibits the Skp1-Cul1-F-box E3 ligase complex to dually promote Wingless and Hedgehog signaling.

Drosophila Homeodomain-interacting protein kinase (Hipk) has been shown to regulate in vivo, the stability of Armadillo, the transcriptional effector of Wingless signaling. The Wingless pathway culminates in the stabilization of Armadillo that, in the absence of signaling, is sequentially phosphorylated, polyubiquitinated and degraded. Loss-of-function clones for hipk result in reduced stabiliz...

متن کامل

Homeodomain-Interacting Protein Kinase Regulates Hippo Pathway-Dependent Tissue Growth

The Salvador-Warts-Hippo (SWH) pathway is an evolutionarily conserved regulator of tissue growth that is deregulated in human cancer. Upstream SWH pathway components convey signals from neighboring cells via a core kinase cassette to the transcription coactivator Yorkie (Yki). Yki controls tissue growth by modulating activity of transcription factors including Scalloped (Sd). To date, five SWH ...

متن کامل

P20: The Role of Protein Kinases in Memory

When an experience is encrypted into a long-lasting memory, it is believed that specific sets of neurons in the brain of the animal undergo changes including the strengthening of preexisting synapses and the growth and maintenance of new synaptic connections. These activity-dependent synaptic changes appear to require the coordination of a variety of cellular processes in spatially separated ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2016